
PROJECT:

w

SOFTWARE ENGINEERING LABORATORY SERIES SEL-88-001

SYSTEM TESTING OF A
PRODUCTION ADA ® PROJECT:

THE GRODY STUDY

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

w

=

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development Opera-

tion)

The goals of the SEL are (I) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that include this document.

The contributors to this document include

Jeffrey Seigle (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

Ying-Liang Shi (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

National Technological Information Service

5285 Port Royal Road

Springfield, Virginia 22161

NASA Scientific and Technical Installation Facility

P.O. Box 8757

BWI Airport, Maryland 21240

ii

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

5202

iii

=

ABSTRACT

_J

The use of the Ada®_language and design methodologies

that utilize its features has a strong impact on all phases

of the software development project lifecycle. At the Na-

tional Aeronautics and Space Administration/Goddard Space

Flight Center (NASA/GSFC), the Software Engineering Labora-

tory (SEL) conducted an experiment in parallel development

of two flight dynamics systems in FORTRAN and Ada. The teams

found some qualitative differences between the system test

phases of the two projects. Although planning for system

testing and conducting of tests were not generally affected

by the use of Ada, the solving of problems found in system

testing was generally facilitated by Ada constructs and de-

sign methodology. Most problems found in system testing

were not due to difficulty with the language or methodology

but to lack of experience with the application.

iAda® is a registered trademark of the U. S. Government Ada

Joint Program Office (AJPO).

5202

iv

L

TABLE QF CONTENTS

Section 1 - Introduction i-I

Section 2 - Definition of the System Test Phase 2-1

Section 3 - Writinq the System Test Plan 3-1

S_¢tiQn 4 - Conductina the System Test 4-1

4.1 Impact of Ada Features 4-1

4.2 Tools 4-2

Section 5 - Errors Discovered Durina System Testina . 5-1

5.1 Source of Data . . . _ ._. . . . 5-1

5.2 Classes of Errors Discovered During System

Testing _ . _ _ . _ 5-1

5.3 Solving Errors Found During System Testing 5-3

5.3.1 Isolating Errors 5-3

5.3.2 Repairing Errors 5-4

5.3.3 Nonlanguage Differences 5-7

Section 6 - Lessons Learned 6_i

Section 7 - Acknowledaments 7-1

References

5202

v

Fiaure

2-1

2-2

5-1

5-2

5-3

L_ST OF ILLUSTRATIONS

Effort for Testing on the Ada Project 2-2

Effort for Testing on the FORTRAN Project• . . 2-3

Classes of Errors Found During System
5-2

Testing
Time to Isolate Errors Found in System

5-5
Testing • • "

Time to Repair Errors Found in System'Test-

ing 5-6

r

=

5202

vi

V

v

v

v

= ==

SECTION 1 - INTRODUCTION

Ada® 1 is not just a new programming language but a part

of a major advance in software engineering technology that

includes new approaches for all phases of the software de-

velopment lifecycle. This paper, one of a series of reports

examining each project phase [Brophy 1987, Brophy 1988],

evaluates the impact of the use of Ada when compared with

FORTRAN in the system test phases of two projects.

The Software Engineering Laboratory (SEL) of the National

Aeronautics and Space Administration/Goddard Space Flight

Center (NASA/GSFC) conducted an experiment involving the

parallel development of a software system in both the Ada
2

and FORTRAN programming languages. NASA/GSFC and Com-

puter Sciences Corporation (CSC) were cosponsors of the

experiment, which was supported by personnel from the three

SEL participating organizations: NASA/GSFC, CSC, and the

University of Maryland. The chief goals of the study were

to characterize the development lifecycle of a large project

when Ada is used as the implementation language with a de-

sign methodology that can take advantage of its features and

to determine the impact of the use of Ada on reusability,

reliability, maintainability, productivity, and portability.

Two teams each developed a Gamma Ray Observatory (GRO) sat-

ellite dynamics simulator from the same specifications. One

team used FORTRAN as the target language with a conventional

m

iAda® is a registered trademark of the U. S. Government

Ada Joint Program Office (AJPO).

2The acronyms were Gamma Ray Observatory (GRO) Dynamics

Simulator in Ada (GRODY) for the Ada project and GRO Dynam-

ics Simulator in FORTRAN (GROSS) for the FORTRAN project.

5202

1-1

v

design methodology, which is the usual approach for this

type of application. The other team used Ada, with an

object-oriented design methodology developed at NASA/GSFC

[Seidewitz, Stark 1986]. NASA uses the GRO dynamics simula-

tor to test and to evaluate GRO flight software under condi-

tions that simulate the expected in-flight environment as

closely as possible [Agresti 1986]. By the end of the

system testing phases, the teams had produced 39,767 lines

of FORTRAN and 128,046 lines of Ada, where lines of code are

the total number of physical lines including exe- curable

code and nonexecutable code, comments, and blank lines.

Although these figures give a rough idea of the com-

parative sizes of the two efforts, they do not give a pre-

cise basis for comparison of the effort required for

development in the two languages [Firesmith 1988].

Data were collected directly from team members and from a

database maintained by SEL. Members of both teams who par-

ticipated in system testing were interviewed and asked about

their expectations, actual findings, problems, solutions,

and opinions. Team members also completed forms throughout

the projects describing their effort levels and changes to

code, and that information was entered into the SEL database.

Presented data are taken from the database, and other sources

are referred to since much of the data has already been

reported.

5202

1-2

_A

L

SECTION 2 - DEFINITION OF THE SYSTEM TEST PHASE

Ada unit testers performed some integration before system

testing officially began. System testing and unit testing

effort overlapped considerably. The team members reported

their hours on Personnel Resource Forms (PRFs) and attributed

hours to specific activities. Figures 2-1 and 2-2 show the

weekly efforts for unit testing and system testing on the

two projects.

In the FORTRAN project, a clear delineation exists between

effort attributed to system testing and effort attributed to

unit testing although they overlap slightly. In the Ada

project, participants were performing system test work at

the same time as unit test work, and the overlap is consid-

erable. This overlap plus team members' comments suggest

that the line between unit testing and system testing was

blurred on the Ada project.

When the data from PRFs giving time attributed specifically

to system testing is considered and this effort is calcu-

lated as a percentage of total project effort, the Ada proj-

ect used 11.3 percent of its effort on system testing, and

the FORTRAN project used 8.91 percent. In addition to de-

fining activities by the hours attributed directly to them,

each project phase had a formal start and end date. Regard-

less of attributed activity, the sum of all effort occurring

during the system test phases was found and the effort during

system test determined as a percentage of all effort on the

entire project. Of the total effort on the two projects,

the portion used during the system test phase was 22.8 per-

cent on the Ada project and 17.9 percent on the FORTRAN

project. The standard allotment for system testing is

20 percent in the flight dynamics area. The Ada project

system testing phase was not grossly out of proportion, but

a general conclusion cannot be drawn about the language since

5202

2-1

r

-()D_

4J

0

<

C
0

C

0

0

g

I
c_

5202

2-2

h-
_0
LU
F--

O9
>-
00

o

E
o
u.
uJ

I

O
O4

uJ

7"
n
1-
09
W
I-

I

O
O
T-

w

_1 | I I

o o o o

SHNOH-H.-rVIS

O4

- v--

"O

k-
O9

k-

CO Z

,9
rrL_

LI.
W

0

04

t_

o

LI3

w

O O O O O O 0
OJ O CO QD _1"
T- T-

SHNOH--13V.LS

F-

W

n

o
r-. (1)

co

j.J
u

O

Z

O

c_.
4_

0

4n

W

0

4.J

0
%4

I
c_

t3_

L

5202

2-3

other variables, such as greater training time for the Ada

project and overlap of activities other than system testing

in the system testing phases, exist.

L-

v--

5202

2-4

L

SECTION 3 - WRITING THE SYSTEM TEST PLAN

The author of the system test plan for the Ada experiment

[Stark 1987] said that the plan was based on the FORTRAN

plan being developed in parallel [Garrick]. He found no

need for special consideration because of the use of Ada or

the object-oriented design methodology; this is consistent

with the idea that system test plans in this environment are

generally written to test against functional specifications,

which ideally do not depend on the implementation language.

However, because the Ada team did not have the same schedule

constraints as the FORTRAN team, they defined more tests--31

compared to 14 for the FORTRAN team.

w

5202

3-1

%.--

w

w

SECTION 4 - CONDUCTING THE SYSTEM TEST

4.1 IMPACT QF ADA FEATURES

Conducting system tests was not generally different for the

Ada project than for the FORTRAN project. The system test

teams usually did not need to examine internals to run tests

and to evaluate results. However, the Ada team did find a

few Ada features that needed special attention.

One case in which an Ada feature was an issue was in induc-

ing conditions that would cause Ada exceptions to be raised.

Many times this inducement was relatively easy, such as de-

letion of a required file; other times it was not, i.e., for

exceptions that flagged conditions that may not be intro-

duced externally such as division by zero. Although some

exceptions were difficult to test overall, the team felt

that they aided incomprehensive error handling.

The Ada test team reported that it was difficult to coordi-

nate concurrent tasks for testing although this coordination

can be challenging regardless of the language. The Ada lan-

guage offers tasking but FORTRAN does not, so the Ada team

took advantage of the ease of tasking more than the FORTRAN

team [Brophy 1988]. Although concurrency was easier to

design and implement in Ada, the team reported that set-

ting up tests and diagnosing problems were more difficult.

They agreed, however, that these problems were not peculiar

to Ada but would be found in any system using concurrency

and that since tasking was easier to implement, Ada provided

a net advantage when using concurrency.

The FORTRAN project used a form of tasking that was supported

by the operating system; the method did not provide true con-

currency but a series of tasks whose execution was controlled

by logic within the application software. Only one task was

active at any given time. The FORTRAN team did not report

5202

4-1

o

L_

%..--

any unusual problems in testing a system with this architec-

ture and attributed only one or two errors to difficulties

stemming from their tasking approach.

Occasionally, the Ada rename feature caused confusion during

debugging sessions. This was attributed to the debugger's

failure to incorporate the rename feature rather than to a

difficulty in the language. When the debugger did not rec-

ognize the name used to rename a variable, programmers would

query the debugger for the value of a variable, and if it

were a name used to rename another variable, they could not

get the value. This problem was discussed with a member of

the Digital Equipment Corporation (DEC) Ada team; she said

she was unaware of the problem and would treat it as a bug.

She believed the problem should be fixed and that it might

even be resolved in the next release of the debugger.

Although the Ada exception handling, tasking, and rename

features required special attention and caused some prob-

lems, none was a major roadblock, and the team felt the

power added by these features outweighed the difficulties.

4.2 TOOLS

Ada development is still relatively new, so despite many

excellent offerings of Ada tools, their availability is

neither as great as nor as widely known as the tools for the

more mature FORTRAN environment. The Ada team developed
1

software on a DEC VAX/VMS system, and DEC offers tools

that are compatible with Ada for use on the VAX [Schultz

1988]. The DEC symbolic debugger and Code Management System

(CMS) were the tools used in system testing. When asked

what other tools would have been useful, one team member

IDEC, VAX, and VMS are registered trademarks of Digital

Equipment Corporation.

5202

4-2

w

suggested that the DEC Performance and Coverage Analyzer

(PCA) would also have been helpful; other team members re-

sponded that they did not suggest that other tools were nec-

essary because they had no information about other available

tools. Although no clear need was identified for additional

tools, more information regarding the availability of other

Ada-oriented testing tools would have been helpful.

The FORTRAN team also developed their system on a VAX and

used only a debugger. They felt that tool was sufficient

for their testing.

W

L

5202

4-3

m

w

%==.

SECTION 5 - ERRORS DISCOVERED DURING SYSTEM TESTING

5.1 SOURCE OF DATA

All team members recorded information for each software

change on a Change Report Form (CRF). The CRF describes the

type of change. Data were examined for changes with a type

of error correction. When the type of change is an error

correction, the form also describes the class of error, the

source of the error, the time to isolate the error, and the

time to implement the change. This data was entered into

the SEL database.

5.2 CLASSES OF ERRORS DISCOVERED DURING SYSTEM TESTING

Brophy noted that Ada developers in the experiment found

unit testing to be more difficult for Ada [Brophy 1988].

Since the team found isolation of Ada units to be difficult,

unit testing usually involved combinations of units rather

than single units. The team members reported that the types

of errors discovered through this method of unit testing

were often mismatched data interfaces and con- flicting

assumptions between internal components, which are errors

more typical of those discovered in later testing phases of

conventional FORTRAN projects. Although this in- tegration

increased unit testing effort, the team believed that it

made system testing easier. The team members also found

that the semantic checking performed by the Ada com- piler

uncovered mismatched calling sequences at compile time that

would not have been found in FORTRAN until run time.

The errors described on the CRFs were divided into the fol-

lowing classes: computational, data value (usage of vari-

ables), data initialization, external interface, internal

interface, and logic. Figure 5-1 shows the distribution of

errors for each project by class of error.

5202

5-1

L

9_

L_

SL

W

W

z

0

0

_4

0

U

i

I

5202

5-2

L

w

Of the total errors found during system testing, internal

interface errors accounted for 21 percent in the Ada project

and 29 percent in the FORTRAN project. However, this appar-

ent difference is not statistically significant.

Because the Ada system was not intended to become opera-

tional, managers placed a lower priority on it when assign-

ing effort to it, and it was difficult to get support that

the team thought they needed from analysts who had strong

backgrounds in the specific application. The team attributed

most errors to misinterpretation of the specifications, such

as errors in mathematical computation, rather than design

errors or coding errors.

The design for the FORTRAN project was largely based on

stable designs of similar systems already developed, and

approximately 36 percent of the code was reused from other

systems. No precedent existed for an Ada system of the type

being developed; therefore, the design was new, and only 2

percent of the code was reused from previous systems

[McGarry, Agresti 1988]. This difference in reuse is another

variable that may have affected the error profile of the

FORTRAN project.

5.3 SOLVING ERRORS FOUND DURING SYSTEM TESTING

5.3.{ ISOLATING ERRORS

The Ada system test team reported that in some ways the Ada

code was easier to debug than similar FORTRAN systems be-

cause the design methodology controls access to related data

as opposed to the FORTRAN implementation that exploited large

COMMON blocks with little control over data access. For the

same reason the scope of effect of software errors was more

limited in the Ada implementation. The team reported that

they generally found errors easily in the Ada implementation

because of the program structures that are enforced by the

language. However, the times to isolate causes of errors

5202

5-3

w

=

m

indicate that the Ada team actually spent more time solving

eYrors than the FORTRAN team. The CRFs described time to

isolate an error defined as the time it took for the respon-

sible developer to isolate an error and does not include the

time to determine who is the responsible developer. As shown

in Figure 5-2, both teams solved most of their errors in less

than 1 hour; however, the FORTRAN team solved 82 percent of

errors in less than 1 hour, and the Ada team solved only 58

percent in less than 1 hour. When the first two categories

are combined, they show that the proportion of errors solved

in less than 1 day were similar for both projects: 94 per-

cent for the FORTRAN project and 96 percent for the Ada proj-

ect.

The Ada compiler does semantic checking that spots some er-

rors that would not be found until testing in a FORTRAN sys-

tem, so the proportion of easier to solve errors may have

been reduced in the Ada system test phase.

The development team found the readability of Ada as com-

pared to FORTRAN, in part due to more rigid coding standards,

to be a clear advantage in debugging, except where long var-

iable names appeared in complex mathematical expressions.

In some instances, this problem was easily solved by the

judicious selection of variable names and by renaming varia-

bles with long names when they were used in such expressions.

5.3.2 REPAIRING ERRORS

As shown in Figure 5-3, once the problems were isolated the

FORTRAN team needed slightly less time to make the changes.

Although the Ada compiler is more comprehensive and detects "

some errors earlier, it often requires recompilation of un-

changed units that are dependent on changed units. Compila-

tion errors can occur even in unchanged units being

recompiled. This recompilation was sometimes a significant

effort, particularly because of the configuration of the Ada

5202

5-4

8

9_

0

! I

S_0_3 -401N30_13d

fr

l-

w

..i

'0

0

o

4J

0

0
4J

I
L_3

..'4

5202

5-5

-()OZOZS

8

6

g_

L8

LL

8kI0_3 ::I01N--JO_3d

0

0c
11J
I--

o

111

o
iii

l--

J:

i

4_

0

0
4-J

_D

0

ctJ

0

.r.i

0

I
L_

°r',l

I 5202

5-6

u

%--

%.--

system. The Ada implementation decision of nesting versus

library units had a ripple effect in debugging at the system

test level; a great deal of recompilation was necessary be-

fore some coding changes could be tested. This complaint

also surfaced in the implementation phase [Brophy 1988].

5.3.3 NONLANGUAGE DIFFERENCES

The FORTRAN team members had greater experience in both the

language in which they were working and in the particular-

application [McGarry, Agresti 1988]. The Ada team consist-

ently reported that the single biggest obstacle to effective

system testing was the lack of availability of people who

were intimately familiar with the technical aspects of the

application. Although the Ada team members were experienced

software developers, having on the average more years of

software development experience than the FORTRAN team mem-

bers [McGarry, Agresti 1988], their lack of experience with

the specific application made it more difficult for them to

detect and solve errors than for the FORTRAN team. These

differences in personnel background may account for the

ability of the FORTRAN team to isolate and correct errors

with equal or less effort than the Ada team, despite the

language advantages described by the Ada team.

L

5202

5-7

SECTION 6 - LESSONS LEARNED

All personnel involved in both projects believed that soft-

ware development in Ada with an appropriate design methodol-

ogy is a different experience than the conventional FORTRAN

development of similar systems.

Team members have subjectively attributed the many differ-

ences between the results of the two projects to various

differences in languages anddesign methodologies, but too

many variables exist to be able to clearly assign all effects

in the system test phases to their causes. Some general

statements can be made about what was learned.

Prep_rina for system testina and executina the tests was not

affected by the Droarammina lanauaq@. The system test plan

for Ada was essentially the same as the plan for FORTRAN.

When running the tests, testers were not concerned with the

language.

A qood repertoire of tools is important. The extra effort

needed to resolve confusion and software problems due to the

error in the debugger shows the impact of even minor prob-

lems with tool software. An organization can most effec-

tively use its human resources if it has a good tool set and

actively promotes the use of the tools.

Ada may reduce some types of errors. Team members consist-

ently reported that the Ada compiler detected many of their

interface errors even before testing began. Objective data

neither confirms nor contradicts this assertion, but it is a

reasonable one since the Ada compiler checks for correct

interfaces, and the FORTRAN compiler does not.

Ada may be easier to debuq. Team members reported that

Ada's better readability and the organization of the team's

design allowed them to find errors more easily than the

5202

6-1

L
w

w

v

%-

L_

zm

FORTRAN team. Objective data neither confirms nor contra-

dicts this assertion, partly because of uncontrolled experi-

mental variables.

RecomDilation of Ada units can have a sianificant cost.

Recompilation issues should be considered short of compro-

mising the integrity of the design. It is important to con-

trol the design to avoid unnecessary dependencies that will

require extensive recompilation in testing phases.

D_finition of test phases for Ada systems is not well de-

fined. Testing Ada software at the system level is not as

clearly defined as was presumed at the outset of the project.

Although the system test plan itself was nearly the same as

for the FORTRAN project, and it was clear which tests were

to be designated system tests, it is very difficult to draw

a hard line between unit testing and system testing. Test-

ing Ada software must be approached differently than testing

systems where functions can be easily isolated for testing.

The differences that could clearly be attributed to the use

of Ada were generally positive ones, and Ada features with

negative aspects were either redeemed by their advantages or

easily mitigated. As the Ada environment matures and as

developers get more experience, we expect improvements to

occur in the building and testing of systems built with Ada

and object-oriented design when compared to methods that are

still considered conventional.

5202

6-2

u_

SECTION 7 - ACKNOWLEDGMENTS

The authors thank Frank McGarry of NASA/GSFC and the Ada and

FORTRAN teams for their effort and cooperation.

w

w

L

5202

7-1

-- 0

r--

REFERENCES

Agresti, W., et al., "Designing with Ada for Satellite Simu-

lation: A Case Study," Proceedings of the First Annual Sym-

posium on Ada Applications for the NASA Space Station,

Houston, Texas, June 1986

Brophy, C., et al., "Lessons Learned in Use of Ada-Oriented

Design Methods," Proceedings of the Joint Ada Conference,

Arlington, Virginia, March 1987

Brophy, C., et al., "Lessons Learned in the Implementation

of a Large Ada Project," Proceedings of the Washington Ada

Technical Conference, March 1988

Firesmith, D., "Mixing Apples and Oranges, or, What Is an

Ada Line of Code Anyway," Ada Letters, September/October

1988, vol. VIII, no. 5, pp. 110-12

Garrick, J., GROSS System Test Plan (unpublished)

McGarry, F., and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"

Proceedings of the 21st Annual Hawaii International Confer-

ence on System Sciences, Kaila-Kona, Hawaii, January 1988

Schultz, B. J., "Industry Use of a Multi-Language Software

Development Environment," Proceedings of the Sixth National

Conference on Ada Technology, March 1988

Seidewitz, E. and M. Stark, General QbSect-Oriented Software

Development, National Aeronautics and Space Administration,

SEL-86-002, August 1986

Stark, M., Gamma Ray ObserVatory (GRO) Dynamics Simulator in

Ada (GRODY) System Tes_Plan, Computer Sciences Corporation,

December 1987

5202

R-I

STANDARD BIBLIQGRAPHY QF S_D LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-0RIGINATED DOCUMENTS

SEL-76-001, Proceedinq_ From the First Summer Software Enqi-

neerina Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-

gine_rinq Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK De$iqn SPecifications Lanauaaes

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinqs From the Third Summer Software Enqi-

neerinq Workshop, September 1978

SEL-78-006, GSFC Software Enaineerinq Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Ravleiqh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FQRTRAN Static Source Code Analyzer Proqram

(SAP) User's Guide (R@vision 3), w. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Enqineerina Laboratory: Relation-

ship _quations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software M0dule Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Lanqu_e (PDL) in the Goddard Space Fliaht Cen-

ter (GSFC) Code 580 Software Desian Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September

1979

5202

B-I

w

E

SEL-79-005, Proceedinas From the Fourth Summer Software En-

qineerina Workshop, November 1979

SEL-80-002, Multi-Level Expression Desian Lanquaqe-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground SUDDort

Software System (MMS/GSSS) State-of-the-Art ComDuter Systems/

_omDatibilitv Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,

A. M. Miller, November 1980

SEL-80-006, Proceedinqs From th@ Fi_th Annual Software Enqi-

neerinq Workshop, November 1980

SEL-80-007, An Appraisa_ of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, $oftwar_ Enqineerinq Laboratory Proqrammer Work-

b_nch phas@ 1 Evaluation, W. J. Decker and F. E. McGarry,

March 1981

SEL-81-011, Evaluatina Software Development by Analysis of

Ch_nue Data, D. M. Weiss, November 1981

SEL-81-012, The Ravl_iqh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.

Picasso, December 1981

SEL-81-013, Proceedinas From the Sixth Annual Software Enqi-

neerina WorkshoD, December 1981

SEL-81-014, Automated Collection of Software Enqineerinq

Data in th_ Software Enqineerinq Laboratory (SELl,

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Enaineerinq Laboratory (SEL) Data Base

0rqaniz%tion and User's Gui4@ Revision I, P. Lo and

D. Wyckoff, July 1983

5202

B-2

=.,

SEL-81-104, The Software Enqineerinq Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Enaineerina Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,

W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Enuineerina Laboratory (SEL) ComDen_

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodoloqv for Fliqht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Enaineerinq Laboratory (SEL) Data Base

Maint@nance System (DBAM) User's Guide and System Descrip-

tion, P. Lo, June 1984

SEL-81-205, Recommended Approach tO Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manaaement Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-003, Software Enqin#erinq Laboratory (SEL) Data Bas_

Reportinq Software User's Guide and System Description,

P. Lo, August 1983

SEL-82-004, Collected Software Enqineerinq Papers:

ume i, July 1982

VOI-

SEL-82-007, Proceedinas From the Seventh Annual Software

Enqineerinq Workshop, December 1982

SEL-82-008, Evaluatinq_Software Development by Analysis of

Chanqes: The Data From the Software Enaineerina Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-I02, FORTRAN Static Source Code AnalyzerProqr_m

(SAP) System DescriptiDn (Revision i), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enqin_erinq Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,

October 1983

5202

B-3

E

r

W

SEL-82-606, Annotated BiblioaraDhv of Software Enaineerinq

Laboratory Literature, S. Steinberg, November 1988

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enqineerinq Papers:

um_ If, November 1983

Vol-

SEL-83-006, Monitorinq Software Development Throuqh DynBmic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedinas From the Eiahth Annual Software En-

qineerinq Workshop, November 1983

SEL-84-001, Manaaer!s Handbook for Software DeveloPment,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Confiquration Manaqement and Control: Policies

and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investiaation of SDec_ication Measures for the

Softwar@ EnqinQ_rina Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinqs From the Ninth Annual Software Enqi-

neerinq Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ada TrainiDq EvBluation and Recommendations From

the Gamma Ray Observatory Ad_iDevelopment Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Enqin_rinq Papers:

ume III, November 1985

VOI-

SEL-85-004, Evaluations of Softwar@ Technoloqies: Testing,

CLEANROOM. and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testina, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinqs From the Tenth Annual Software Enqi-

neerinq Workshop, December 1985

5202

B-4

SEL-86-001, Proqrammer's Handbook for Fliqh_ DyDamics Soft-

ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Softwar_Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliaht Dynamics System Software Development En-

vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enqineerinq Papers: Vol-

ume IV, November 1986

SEL-86-005, Measurina Software Desiqn, D. N. Card, October

1986

SEL-86-006, Proceedinas From the Eleventh Annual Softwar e
Enqineerin_ Workshhop, December 1986

SEL-87-001, Product Assurance Policies and__r0cedures for

Fliqht Dynamics Software Development, S. Perry et al., March

1987

SEL-87-002, Ada Style Guide (Version i.I), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for Applyinq the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessina the Ada Desiun Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-005, Fliqht Dynamics Analysis System (FDAS) Build

User's Guide, S. Chang et al., October 1987

SEL-87-006, Fliqht Dynamics Analysis System (FDAS) Build

SYstem Description, S. Chang, October 1987

SEL-87-007, Application Software Under the Fliqht Dynamics

Analysis System (FDAS) Build 3, S. Chang et al., October 1987

SEL-87-008, Data Collection Procedur@_ for the Rehoste4 SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enqineerinq Papers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedinus From the Twelfth Annual Software En-

uineerinu Workshop, December 1987

° . 5202

B-5

%...

SEL-88-001, System Testinq of _ Production Ada Proi_ct:

GRODY Study, J. Seigle and Y. Shi, November 1988

The

SEL-88-002, Coll@cted Software Enuineerinu PaPers:

ume VI, November 1988

VOI-

$EL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the

Software Enain@@rinq Laboratory, Computer Sciences Corpora-

tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case Study,"

Proceedinqs of the First International Symposium on Ada for

th@ NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Proqram Transformation and Pro-

arammina Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedinas of the

Fifth International Conference on Software Enqineerinq.

New York: IEEE Computer Society Press, 1981

IBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technology,

January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

M_n_aement__nd Enqineerinq. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Meth-

odology," Proceedinqs of the First Pan-Pacific Computer COD-

ference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?," Jo_rn_l of 8vstems and Software, February 1981,

vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"

Proceedinqs of the International Computer Software and Ap-

plic_ti0ns Conference, October 1985

5202

B-6

L

Z

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communications of

the ACM, January 1984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedinas of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Procee_nqs of the IEEE/MITRE Expert Systems in GQv_rnm_n_

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedinas of the Workshop

Qn Quantitative Software Models for Reliability, Complexity,

and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedings of

the 9th International Conference on Software Engineering,
March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedinqs of the Joint Ada Con-

ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-

urement Into Software Environments," University of Maryland,

Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Enqin@@rinq, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Enqineerinq, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedinas of the Eiahth _nternational Conference on Soft-

ware Enaineerina. New York: IEEE Computer Society Press,

1985

F

5202

B-7

L

w

Basili, V. R., and R. W. Selby, Jr., ComDarina the Effective-

n_$_ of Software Testinq Strateaies, University of Maryland,

Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Enaineerina, July 1986

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Transactions on Software

Enqineerinq (in press)

2Basili, V. R., and D. M. Weiss, A M@thodoloqy _or Collectinq

Valid Software Enaineerinq Data, University of Maryland, Tech-

nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on

Software Enqin@@rinq, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedinq_of_he Fifz

teenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

MeasUrement Experiment," Proceedinqs of the Software Lif_

Cycle Manaaement Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedinas of the Second Soft-

w_r_ Lif_ Cycle Manaaement Workshop, August 1978

iBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedinqs of the Third Interna-

tional Conference on Software Enqin_erinq. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Proceedinqs Of the

Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,

"Lessons Learned in the Implementation Phase of a Large Ada

Project," Proceedinqs of the Washinaton Ada Technical Con-

ference, March 1988

5202

B-8

m

3Card, D. N., "A Software Technology Evaluation Program,"

Annals do XVIII Conqresso Nacional de Informatica, October

1985

5Card, D. and W. Agresti, "Resolving the Software Science

Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Journal of SYstems and Software, June 1988

4Card, D., N., V. E. Church, and W. W. Agresti, "An Em-

pirical Study of Software Design Practices," IEEE Trans-

actions on Software Enaineerina, February 1986

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE Transactions on Software

Enaineerina, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Pro¢_e_inqs of the Eiqhth Interna-

tional Conference on Software Enqin@@_inq. New York: IEEE

Computer Society Press, 1985

iChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

inas of the Fifth International Conference on Software

En ing_D_9/_i_. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Enqineerinq Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedinqs of the

Seventh International Computer Software and APplications

Conference. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: I00 pages long)

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-

tion of a Large Ada Project," Proceedinq_ Qf the 1988

Washinqton Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A D_monstrati0n of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource

Data: A Model for Logical Association of Software Data,"

University of Maryland, Technical Report TR-1848, May 1987

5202

B-9

L

6jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model," PrQceedinqs of the Tenth International

Conference on Software Enaineerina, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for

Software Engineering," University of Maryland, Technical

Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Soft-

ware Engineering Information Bases from Software Process and

Product Specifications," Proceedinas of the 22nd Annual

Hawaii International Conference on System Sciences, January

1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"

Proceedinq_ of the 21_t Annual Hawaii International Con-

(erence on System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedinus of the Hawaiian Inter-

national Conference on System Sciences, January 1985

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedinq$ of the Eiqhth international Computer Software

an4 Applications Conference, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-

tems for Software Engineering Management," University of

Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedinas of the Eighth Inter-
national Conference on Software Enaineerina. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Enaineerina, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Proceedinq3 from

th% Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Basis for Generating Customized SE

Information Bases," Proceedinas of the 22nd Annual Hawaii

InternatiQnal Conference on System Sciences, January 1989

5202

B-10

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedinqs of the 21st

H_waii International Conference on System Sciences, January

1988

6Seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach," Proceedinqs of the

CASE Technoloqy Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk

and Ada," Proceedinq$ of the 1987 Conference on Obj__c__

Oriented Proarammina Systems. LanuuaqeSo and APPlications,
October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," p_oceedinqs of

the First International Symposium on Ada for the NASA Space

Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle," Proceedinqs of the Joint Ada Con-

ference, March 1987

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development D_ta, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

5Valett, J. and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"

Proceedinas of th_ 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Enqineerinq, February 1985

5WU, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinas of the Joint Ada Con-

ference, March 1987

iZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedinqs Qf _h_ Twelfth Conference on

the Interface of Statistics and Computer Science. New York:

IEEE Computer Society Press, 1979

5202

B-II

w

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

_or Computer and Information Science (proceedings),
November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedinqs of the 26th Annual Tech-

nical Symposium of the Washinuton. D. C., Chapter of the ACM,

June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development," Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedinas of the Soft-

ware Life Cycle Manaqement Workshop, September 1977

NOTE_:

iThis article also appears in SEL-82-004, Collected Soft-

ware Enqlneerinq Papers; Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enqln@er_q Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enqlneerinq Papers: Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

ware Enqlneerinq Papers: Volume IV, November 1986.

5This article also appears In SEL-87-009, Collected Soft-

ware Enaineerinq Papers; Volume V, November 1987.

6This article also appears In SEL-88-002, Collected Soft-

ware Enqlneerinq Papers: Volume VI, November 1988.

5202

B-12

.. 2

LJ

:w

_ =
W

